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Quantitative approach to temporal diffraction from stepped surfaces
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We demonstrate how quantitative information on surface kinetics can be obtained from the intensity fluc-
tuations in a diffraction experiment. As an example we have calculated the diffraction intensity time autocor-
relation function from a surface consisting of fluctuating steps. Two different rate limiting atomic processes are
considered as the source of the fluctuations. We show that the mechanism for equilibrium of a step can be
distinguished by the characteristic time decay of the diffraction intensity autocorrelation function. In addition
we discuss limits on experimental parameters necessary to observe the diffraction fluctuations.
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I. INTRODUCTION

Measurements of dynamic properties have recently b
demonstrated using either x-ray photon correlat
spectroscopy1,2 ~XPCS! or temporal low-energy electron dif
fraction ~LEED! spectroscopy~TLS!.3 The dynamics of
opaque materials can be measured using XPCS, while
offers the ability to measure the dynamics of surfaces do
to atomic length scales. With the experimental realizat
that time correlations can be resolved in a diffraction pro
it is necessary to connect the observed time structure
the physical surface phenomena that generate them. A
specific example, we will discuss how the dynamics of st
can be measured using TLS.

Step dynamics and their relationship to crystal growth4,5

and equilibration of crystal structures are an important a
of research.6 A large volume of experimental work, usin
both scanning tunneling microscopy and reflection elect
microscopy~REM!, exists for both stepped metal surfaces7–9

and stepped Si surfaces, most notably on Si~111! ~Ref. 10!
and Si~001! ~Ref. 11!. A number of models for step dynam
ics have been proposed and studied.12–14 Bartelt et al. have
used a model for isolated steps to show that step fluctuat
on Si~111! seen in REM images are rate limited by ato
evaporation/condensation kinetics.15 In that work dynamic
variables like the step correlation function,^x(t)x(0)&
~wherex is the position of a step edge!, were calculated and
compared with REM measurements to infer the step kinet
In temporal diffraction experiments, however, different d
namic variables are measured. Specifically, while the s
correlation function̂ x(t)x(0)& can be measured in a rea
space probe, a diffraction probe measures correlations
portional to ^cos@x(t)#cos@x(0)#& ~see below!. Therefore, a
comparison of temporal diffraction fluctuation measureme
to pertinent surface dynamics variables requires some de
opment.

In a TLS measurement~or any other time resolved dif
fraction experiment! a time series of the intensity is acquire
i.e., I (qW ,t). From this series the autocorrelation functio
G(t) can be generated:
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G~t!5^dI ~qW ,t !dI ~qW ,t1t!& t , ~1!

where dI (qW ,t)5I (qW ,t)2^I (qW ,t)&. Note that the intensities
are integrated over the resolution width,Dq, of the diffrac-
tionmeter. If Dq is large, the coherent diffraction intensit
only comes from a small coherent region of sizez
52p/Dq. Since the actual diameter,D, of the incident beam
is much larger thanz, the diffraction intensity is an incoher
ent sum over theM incoherent regions in the beam given b
M5(D/z)2. In the best high-resolution LEED diffraction
meter (D/z)2;105. The question is: to what extent does th
averaging over these incoherent regions degrade the m
surement ofG(t)? To answer this question we must com
pare the contributions toG(t) from both the physical signa
we are interested in measuring,Gp(t), and from statistical
noise in the measurement.

The measured autocorrelation function contains contri
tions from both statistical noise and from the correlated m
tion of the structural property measured by the diffracti
~e.g., step motion, region size, adsorbate density, etc.!. As
mentioned, the incident electron beam has a finite correla
length, and we must concern ourselves with the numbe
incoherent scattering regions contained within the area i
minated by the beam. The total collected current is given
an incoherent sum over theM regions

dI ~ t !5(
i 51

M

$^I p&2@ I p,i~ t !1h i~ t !#%, ~2!

whereI p,i(t) is the diffraction intensity from thei th incoher-
ent region and̂ I p& is the average signal from each regio
~i.e., ^I &5M ^I p&). h(t) is a noise source presumed to b
purely statistical so that its autocorrelation function
^h i(t)h j (t1t)&5^I p&d i , jd(t). Combining Eqs.~1! and ~2!
and using the statistical properties ofh(t) gives3

G~t!

^I &
5d~t!1

^I &
M

1

^I p&
2
$^dI p,i~ t !dI p,i~ t1t!&

1~M21!^dI p,i~ t !dI p,j Þ i~ t1t!&%. ~3!
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2998 PRB 61MENZEL, WIESENFELD, CONRAD, AND TRINGIDES
The first term in Eq.~3! is the statistical noise contribution t
the signal. If there are no correlations between theM regions,
the last term in brackets is zero. The second term in Eq.~3!
is the autocorrelation function from a single region, defin
asGp(t)5^^dI p,i(t)dI p,i(t1t)& t& i . SinceM is proportional
to the area of the incident beam,^I &/M is proportional to the
incident current density. Therefore, as long as the incid
current density is large enough so that the second term in
~3! is comparable to 1,Gp(t) should be measurable com
pared to the statistical noise.3

As a prototypical system we will explore the intensi
fluctuations from a surface with atomic steps that are fluc
ating in time due to a number of possible atomic proces
To illustrate how kinetics information can be derived from
measured TLS autocorrelation function we seek an exp
sion for Gp(t)/^I p&

2 for step motion. OnceGp(t) is known,
we can use it along with surface energetics and kinetics
rameters derived from pervious work to place limits on t
sensitivity of a diffraction fluctuation measurement.

II. TEMPORAL DIFFRACTION FROM STEPS

We begin by considering a model system of steps. Fig
1 shows a vicinal surface consisting of an ordered stairc
structure. At T50 K the equilibrium surface consists o
straight mono-atomic steps of heighth and a terrace width
L5ma' , wherea' is the distance between atomic rows
the terrace andm is an integer that selects the anglef be-
tween the average stepped surface normal and the low-in
terrace normal. At elevated temperatures kinks form on
step edges with unit lengthai causing the steps to meand
with an amplitude that depends on the kink energy« and the
step-step interaction.16

The instantaneous displacement of thej th step at a posi-
tion y along the step relative to theT50 K position is given
by a'D j (y,t). Step meandering is limited by interaction
V(D,m) between adjacent steps@hereV(D,m) is the poten-
tial per unit length of the step#. We will ignore the case
where the only interaction is to exclude overlapping
neighboring steps. While this model has been discusse
the literature,17 it leads to the unphysical result that the i
tensity fluctuations decrease with increasing temperatu18

The form of the potential for small fluctuations~i.e., D
!m) is given by

V~D,m!5U~m1D!1U~m2D!'2U~m!1c~m!a'
2 D2.

~4!

FIG. 1. Schematic drawing of a stepped surface with aver
terrace lengthma' .
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In this harmonic approximation,c(m)5U9(m).
The time-dependent kinematic scattering amplitude fr

the stepped surface in Fig. 1 is given by

A~qW ,t !5A0(
rW

f eiqW •rW(t). ~5!

A0 is the incident amplitude,f is the atomic scattering facto
andqW 5kW f2kW i is the momentum transfer vector. The positio
of each atom can be written conveniently as:rW j ,n5xj (y,t) x̂
1rW j ,n(y,t)2 jhẑ, where xj (y,t) is the position of thej th
step andrW j ,n(y,t) is the position of thenth atom on thej th
terrace~relative to thej th step edge!.19 The position of each
step edge can further be rewritten in terms of theT50 K
position and a displacement,D j (y,t), as: xj (y)5 jma'

1D j (y,t)a' . Similarly rW j ,n(y,t)5nj (t)a'x̂1yW , where
nj (t)51,2,3, . . . ,@m1D j 11(y,t)2D j (y,t)#. For conve-
nience we breakqW into components perpendicularq' and
parallelqi to the low index terrace surface.

Since the intention is to calculate the intensity fluctuatio
from a stepped surface, we can chooseqW in such a way as to
maximize the sensitivity to step motion. It is easy to sho
that the diffraction will be maximally sensitive to steps wh
qi has only anx component and obeys the equality:ma'qi
2hq'5np.19 For generality we choose qi5p(1
1b)/ma' which requires thathq'5@11b2n#p. For b
50, q' will be at an out-of-phase condition so that adjace
terraces scatter 180° out of phase. The amplitude in Eq.~5!

for this value ofqW becomes

A~qW ,t !5g~b,m!

3(
j

Nx H (
y52z/2

z/2

cosFp~11b!
D j~y,t !

m G
1 i (

y52 z/2

z/2

sinFp~11b!
D j~y,t !

m G J , ~6a!

g~b,m!5
A0f cos~pb/2!eip(11b)(11m/2)/2m

sin~p~11b!/2m!
, ~6b!

where the sums are over the coherent size of the beamNx
5z/a' .

In order to calculate the diffraction intensity from Eqs.~6!
we must make some assumptions about the relationship
tween the D j (y,t)’s. To do this we will use a quasi
independent step model. That is, we assume that an iso
step is subject to the potential in Eq.~4! caused by neighbor
ing steps. Using this potential in the Langevin formalis
~described in the next section!, we calculate the time-
dependent fluctuations of a single step. For the purpos
calculating the diffraction intensity from a surface with ma
steps, we assume that the steps are far enough apart o
the step fluctuations are sufficiently small so that fluctuatio
on one step do not influence the fluctuations on neighbo
steps. In other words fluctuations on neighboring steps
not alter the potential an isolated step is subject to. In t
model, the transverse step-step correlation function^@D j (y)

e
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PRB 61 2999QUANTITATIVE APPROACH TO TEMPORAL . . .
2Di(y)#2& becomes a constant 2^D2&; twice the mean
squared amplitude of an isolated step.

However, even for relatively large vicinalities, stepp
surfaces are generally above their roughening temperatu
low as room temperature. Above the roughening tempera
^@D j (y)2D i(y)#2& has some type of logarithmic divergenc
in u i 2 j ua' .20 The quasi-independent approximation us
here will therefore fail to reproduce the correct diffractio
line shapes even at relatively largeqi5qx . For the purpose
of calculating diffraction intensities, however, our assum
tion of quasi-independent steps leads to the very phys
result of a Debye-Waller form ofI (qW ,T) that depends on the
mean squared fluctuation of a step as is shown in Sec.
Therefore, in the interest of beginning to understand T
signals, we shall embrace the idea of weakly interacting s
and leave the case of coupled step motion or the cas
surfaces above their roughening temperature to be expl
at a later date.

For independent stepsA(qW ,t) @Eq. ~6a!# becomes a sum o
j independent vectors in the complex plane. In other wo
this problem is equivalent to a 2D random walker in the
real-imaginary plane where each step of the walk has c
ponents given by

x̃ j~ t !5g(
y

cos@qia'D j~y,t !#, ~7a!

ỹ j~ t !5g(
y

sin@qia'D j~y,t !#. ~7b!

The total scattered amplitude is then a vector sum
A(qW ,t)’s from each step after a total ofNx steps. This prob-
lem has been thoroughly explored in the literature.21 The
magnitude and phase ofA(qW ,t) are determined solely by th
statistics ofD j (y,t) for a single step.

To calculate the time-dependent correlation function
must take the average^I p(t)I p(t1t)&. The average will con-
tain terms like^x̃i(t) x̃ j (t) x̃k(t1t) x̃l(t1t)& as well as simi-
lar terms forỹ. These terms take on different values depe
ing on i, j, k, and l and can be determined exactly within a
independent step model. For instance, wheni 5 j 5k5 l the
terms becomêx̃(t)4&, for i, j, k, andl not equal to each othe
the terms becomêx̃(t)&4, and so on. By careful countin
and only retaining terms proportional toNx

3 or higher, the
time dependent normalized correlation function and diffr
tion intensity become

Gp~t!

^I p&
2

5
4

Nx^x̃&2
$^x̃~ t !x̃~ t1t!&2^x̃~ t !&2%, ~8!

where

^I p&5Nx
2^x̃&2. ~9!

Note that the fluctuations are proportional to 1/Nx , the num-
ber of statistically independent steps sampled by the cohe
part of the beam. Also note that the averages in Eq.~8!
represent an ensemble average over a single step so th
subscript j in Eqs. ~7! and onD j (y,t) can be dropped in
subsequent discussions. All that remains in order to eval
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Eqs.~8! and~9! is to calculate the appropriate averages. W
outline the calculations for two specific dynamic models d
scribing fluctuations of a step about its equilibrium positio

III. TIME CORRELATIONS

To illustrate how an atomic mechanism gives rise to
tensity fluctuations we will look at two separate models
step motion. In the first model diffusion of atoms or vaca
cies on the terraces is fast enough that the step kinetics
limited by exchange of step atoms with either vacancies
adatoms on the terrace. This is the evaporation/condensa
~EC! model. It has been shown that the position of a step
this limit is governed by a Langevin equation12,15

]D

]t
5

Geb̃

kT

]2D

]y2
2

2Gec

kT
D1

1

a'

h~y,t !, ~10!

whereGe is the step mobility andb̃ is the step edge stiffnes
given by12

Ge5
aia'

2

te
, ~11!

b̃~T!5
aikT

b2~T!
. ~12!

Here, te is roughly the time for an atom to attach/deta
from the step edge.12 The step diffusivity,b2, is the local
mean square length of a kink perpendicular to the step.
attachment/detachment of atoms from the steps is descr
by an uncorrelated thermal noise term given by

^h~y,t !h~y8,t8!&52Ged~ t2t8!d~y2y8!. ~13!

In the second model, referred to as the step-edge diffus
model ~SD!, the atom density on the terraces is assumed
be so low that mass transport is primarily along the s
edges. The kinetics are limited by an atom hopping from o
step edge site to an adjacent one. The analogous equati
Eq. ~10! for the step position is12

]D

]t
52

Gsb̃

kT

]4D

]y4
2

2Gsc

kT

]2D

]y2
1

1

a'

h~y,t !. ~14!

The noise term is now correlated because of hopping thro
adjacent sites

^h~y,t !h~y8,t8!&52Gsd~ t2t8!d9~y2y8!, ~15!

Gs~T!5
ai

3a'
2

ts
. ~16!

Here,ts is roughly the time for an atom to hop between tw
adjacent edge sites.12 Again we caution that both models fa
to accurately represent long wavelength fluctuations of
steps. As mentioned in the last section, stepped surfaces
at moderate temperatures are rough. When many step ef
are included, the step edge correlation function^@D j (y)
2D i(y8)#2& diverges as ln(uy2y8u) whereas the models use
here give rise to an exponentially decaying function~see
below!.20,22However, since our intent is to estimate the TL
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signal and identify relevant physical parameters that affec
these models should be adequate. We also note that eq
bration times will be drastically underestimated beca
larger fluctuations above the roughening temperature will
quire mass transport at levels much higher than predicted
the models used in this discussion.

Equations~10! and~14! can be solved to give the averag
intensity and normalized correlation function~see appendix!.
In the continuum limit (Ny→` and Nyai5z) the average
intensity is found by substituting the appropriategk @Eqs.
~A4!# andkk @Eqs.~A6!# for either model into Eq.~A17! in
order to evaluatêx̃&2 in Eq. ~9!. This gives

^I p&5Nx
2~z/ai!

2ug~m,b!u2exp@2qi
2v2#. ~17!

Herev2(T,m) is the mean squared width of a step fluctu
tion in equilibrium.23

v~T,m![F b2kT

8c~m!ai
G1/4

. ~18!

Similarly, from Eq. ~A18! the normalized autocorrelatio
function becomes

Gp~t!

^I p&
2

5
4

Nx~z/ai!
(

l 52
z

2ai

z
2ai

$cosh„@qiv#2F~t,l !…21%.

~19!

The functionF(t,l ) is the relative correlation of two point
on a step separated byla i

F~t,l !5e2u l uai /j2
1

p

Nai

4v2E2`

`

Ck~t!cos~klai!dk.

~20!

We have writtenF(t,l ) in terms of the Fourier coefficient
of the spatial correlation function Ck(t5ut2t8u)
5a'

2 ^uD̃k(t)2D̃k(0)u2& defined by Barteltet al.15 For the
EC modelCk is given by15

Ck~t!5j
4v2

Nai

12exp@2~t/t0e!$~jk!211%#

~jk!211
, ~21a!

while for the SD model,15

Ck~t!5j
4v2

Nai

12exp@2~t/t0s!~ai /j!2$j4k41j2k2%#

~jk!211
,

~21b!

where

t0e5
kT

2Gec~m!
~21c!

and

t0s5
ai

2kT

2Gsc~m!
, ~21d!

are the equilibrium times of a step disturbance. Also,
correlation length,j, for two points on a step separated byy,
i.e., ^D(0)D(y)&5v2 exp(2y/j) is given by23
it,
ili-
e
-

by

-

e

j~T,m![F aikT

2b2c~m!
G 1/2

. ~22!

Equation ~17! shows that the diffraction intensity decay
with a Debye-Waller-type exponent whose argument
qi

2v2. This should have been expected from the form of E
~3!. For stepped surfaces, only the step edges contribut
the intensity whenqW is chosen to be at an out-of-phase co
dition. While the mean step position is constant, the s
position fluctuates with a mean squared deviation ofv2,
wherev2 is viewed analogous to the mean square displa
ment of an atom,̂ u(T)2&, in the normal Debye-Waller
theory.24 This means that the ratiob2/c(m) can in principle
be obtained by measuring the peak intensity as a functio
temperature. The total intensity at the out-of-phase peak
be I (qW ,T)}exp$2^@qW•uW(T)#2&2@qiv(T)#2%. Since^u(T)2&}T,
a plot of log(I) vs T will be a straight line with a slope
proportional toq2 in the absence of step fluctuations. Devi
tions of this plot from a linear behavior would be due to t
temperature dependence ofb2. In a Terrace-Step-Kink mode
for instance,b2} 1

2 sinh22(«/2kT).17 Using Eq.~18! for v2,
this would contribute aT3/2 term in the Debye-Waller plot
whenkT@«/2. Assuming thatqW can be chosen small enoug
so that@qW •uW (T)#2!@qiv(T)#2, the deviation from a linear
slope should be observable.

The magnitude of the expected TLS signal can be de
mined from thet50 value of the autocorrelation function
Gp(0) ~the mean squared intensity fluctuation fromNx
steps!. For both models att50, F(0,l )5exp(2uluai /j) so
that Gp(0) contains only equilibrium information about th
fluctuations. Assuming thatqi

2v2,1, the cosh can be ex
panded in Eq.~19! for ai /j!1 to give

Gp~0!

^I p&
2

'
2

Nx~z/j!
~qiv!4@12exp$2z/j%#. ~23!

Note that the size of the signal is proportional to (qiv)4

and inversely proportional to a rescaled correlation len
(z/j). The (z/j)21 comes from the fact that points on a ste
separated by distances larger thanj are independent of one
another. Therefore, the number of independent scattering
gions within the coherence lengthz are reduced by a facto
of (1/j). At low temperature where diffusion is slow andj
@z, each part of the step is correlated with all others in
coherent part of the beam diameter. In this limit the exp
nential in Eq.~23! can be expanded so that to first order t
fluctuations are independent of bothz and j. At high tem-
peratures the diffusion is fast andj is small. If j is much
smaller thanz, the fluctuations from Eq.~23! are reduced by
the number of statistically independent pieces along the
edge, i.e., (z/j). Note that Eq.~23! reduces to Eq.~5! of Ref.
3 in the limit j@z.

Given thatz is known and thatv2(T,m) has been mea
sured independently from a Debye-Waller analysis as
cussed above,j(T,m) can then be determined from the tem
perature dependence of the fluctuations. By combining
results of Debye-Waller and fluctuations measurements,
form of the step-step interaction potentialc(m) can be de-
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PRB 61 3001QUANTITATIVE APPROACH TO TEMPORAL . . .
termined sincev and j are related through Eqs.~18! and
~22!: (v2j)2154c(m)(kT)21.23

We also note that the fluctuationsGp(0)/^I & ~compared to
the statistical noise! depend on the step separationL through
Nx , j, v, and qi . Both j and v depend critically on the
form of the step interaction potential. For an elastic or dip
interaction25 ~with U(L)}1/L2), Gp(0)/^I & increases pro-
portional to L whenj!z but decreases as 1/L whenj@z. If,
as proposed by Alerhandet al. for Si~001! steps,26 the inter-
action potential has a form ln(L), then the fluctuation signa
always decreases with larger terrace lengths@in this case
Gp(0)/^I &}1/L2 and 1/L3 for j!z andj@z, respectively#.

At this point we can estimate the size of the TLS sign
There has been extensive research on stepped Si~111! and
Si~001! surfaces.16 Alfonso et al. have studied the high tem
perature Si~111! ‘‘1 31’’ phase on a range of different ste
densities using REM.10 From an analysis of their results va
ues of b255.7 Å 2 ~at 900°C) and c(m) between
0.72 eV Å /(ma')4 to 1.32 eV Å /(ma')4 have been
estimated.23,27 Assuming the larger value ofc(m) and a
ma'5200 Å terrace givesv;69 Å andj;6400 Å . If
we take the coherence length of the beam to bez
51400 Å for high-resolution LEED,28 then Nx57. The
fluctuations from a single region are given by Eq.~23!;
Gp(0)/^I p&

250.4. From Eq.~3! the measured diffraction sig
nal, G(0)/^I &2, is an average over theM regions plus a con-
tribution from the statistical noise; 1/^I &1Gp(0)/M ^I p&

2.
For a beam diameterD550 mm the number of coheren
regions isM;(D/1400 Å )2; giving Gp(0)/^I &2;331026.
In order forGp(0)/^I &2 to be measurable it must be comp
rable to 1/̂I &. If we take the criteria for the minimal detec
able signal to be greater than 10% of the statistical noise
would require;30 000 counts per gate period. Finally, th
necessary count rate depend on the gate time chosen fo
experiment that in turn depends on a characteristic time s
for the step fluctuations. For a Si~111! stepped surface a
typical correlation time, t0e, for step fluctuations is
;1.0 s.15 Insisting that the time resolution of the TLS e
periment be 2% oft0e ~i.e., 0.02 s gate time!, the scattered
diffraction intensity would have to be;106 counts/s in or-
der to detect the step fluctuations. This type of count rat
certainly within the capability of a typical high-resolutio
LEED gun. Note that for standard LEED systems, the be
diameter and z are typically 500mm and 200 Å ,
respectively.29 This means that to obtain the same statist
available to a high-resolution LEED system, a count rate
;109 counts/s would be needed. This is also an obtaina
countrate but the 200 Å resolution would mean thatGp
would be an average over manyq’s further reducing the
signal. For an x-ray scattering experiment with both a be
diameter and transfer width equal to 5mm,2 3000 counts/s
would be required, which is about an order of magnitu
higher than most undulator sources provide.

As an illustration of the temperature dependence of
fluctuations we have plottedGp(0)/^I p&

2 in Fig. 2 for a
stepped Si~111! surface with terrace sizes of 200 an
400 Å . The step interaction is chosen to be proportiona
1/L2 so c(m)51.32 eV Å /(ma')4 and j;6 400 Å at
900 °C. The temperature dependence ofv2 andj are calcu-
lated from Eqs.~18! and ~22! using either a
e
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m

e

e

o

Terrace-Step-Kink17,25 ~TSK! or Restricted-Step-Kink30

~RSK! model to estimate the step diffusivity~assuming a
kink energy of 200 meV). We point out thatj.z over the
entire temperature range in Fig. 2 soGp(0)/^I p&

2}L. From
the above discussion it is clear that TLS has sufficient s
sitivity to measure the fluctuations of steps.

To illustrate the differences between the time depende
of the two models we have plottedGp(t)/^I p&

2 for the EC
and SD models in Figs. 3 and 4, respectively, for differe
values ofz/j. The time behavior of the two models is qui
different. The most striking difference, as already point
out by Barteltet al.,12 is that equilibration by SD is much
slower. Givent0e;t0s, the correlation function from the SD
model decays over three orders of magnitude slower t
G(t) in the EC model.

At short timesGp(t)/^I p&
2 is not a simple function of

FIG. 2. Plot of the predicted relative correlation function
temperature for a stepped Si~111! surface. Two terrace widths ar
assumed:L5ma'5200 and 400 Å . The instrument transfer wid
is 1400 Å . The step diffusivityb2 is calculated in both the TSK
and RSK models.

FIG. 3. A plot of Gp(t)/^I &2 vs t/t0 for the EC model (Nx

51 andqiv51). The different curves are for different choices
z/j. The insert shows a log plot of the same curves showing
long time exponential decay.
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time for either model. The time at which the correlatio
function falls in half, (t/t0)1/2, is a function of the transfe
width z, j and qiv. Figure 5 is a plot of (t/t0)1/2 deter-
mined from numerical calculation of Eq.~19! for various
parameters in the EC model. The half time increases w
z/j for small values of this ratio and then saturates a
constant forz/j.2. Note that the scaling of the half tim
has a weak dependence onj at largez/j. This size depen-
dence can be understood by looking at thek dependence o
the spatial correlation function in Eq.~21a!. The Fourier
transform ofCk , when (t/t0).1, is dominated by its smal
k behavior. In this limitF(t,l ) is approximately a Fourie
transform of (z/p)exp(2t/t0)exp(2j2k2), which is an
exp(2t/t0) times a Gaussian who’s width isla i
;(t/t0)1/2j. In other words, forla i5z@j, the sum in Eq.
~19! can be extended to infinity in the long time limit an

FIG. 4. A plot of Gp(t)/^I &2 vs t/t0 for the SD model (Nx

51 andqiv51). The different curves are for different choices
z/j. The insert shows a log plot vs (t/t0)1/4 of the same curves
showing the long time exponential decay.

FIG. 5. A plot of the relative half time (t/t0)1/2 of Gp(t) vs the
relative beam coherence lengthz/j for the EC model (Nx51 and
qiv51). The different curves are for different choices of the c
relation length;j/ai510 (s), 100 (h), 400 (n). The dotted line
is a guide to the eye.
th
a

becomes independent ofz. For z,j the sum, and thus the
time constant, are a function ofz. This is equivalent to not-
ing that the longest time constant,tk5t0@(jk)211#21, in
Eq. ~21a! is set by the smallestk probed by the diffraction,
i.e., kmin;2p/z. If kmin is of order 1/j, then tk becomes
independent ofz and is completely dominated by the equ
librium time t0.

The characteristic decay time in the SD model has a si
lar behavior~becoming independent ofz/j at largez/j) as
seen in Fig. 6. Note that the time scale in Fig. 6 is norm
ized by (ai /j)2. Unlike in the EC model, step-edge diffusio
requires the concerted motion of atoms from one point on
step to another. This means that a simple 1D diffusion model
would give the diffusion time to be proportional to (d/ai)

2,
whered is some characteristic length. The length scaled is
again set byj, since it is the distance over which step flu
tuations are correlated.

The two models for equilibrium of the step can be eas
distinguished in a TLS measurement. To show this we lo
at the long time behavior of the correlation function,t/t0
@1. While we have not been able to develop an analy
expansion of Eq.~19! in this limit, we have deduced an
empirical expression from the numerical calculations of E
~19! for both models. For the EC model the correlation fun
tions decay exponentially as can be seen in the insert of
3

Gp~t!

^I p&
2

}
limt/t0e→`

expH 22
t

t0e
@11O~j/z!1•••#J . ~24!

Equation~24! is reasonably accurate fort/t0e.1. For step-
edge diffusion the intensity correlation function at long tim
is distinctly different from Eq.~24!. From the insert in Fig. 4
the long time behavior is exponential but with an argum
proportional to (t/t0s)

1/4. Empirically we find that the long
time behavior can be approximately described as

-

FIG. 6. A plot of the relative half time (t/t0)1/2 of Gp(t) vs the
relative beam coherence lengthz/j for the SD model (Nx51 and
qiv51). The different curves are for different choices of the co
relation length;j/ai520 (s), 137 (h), 268 (n). The dotted line
is a guide to the eye.
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Gp~t!

^I p&
2

}
limt/t0s→`

expH 2
1

3 S t

t0s
D 1/4

@11O~j/z!1•••#J .

~25!

To extract the characteristic atomic time constantste or ts
from the correlation function requires some apriori know
edge of j. For instance, in the case of EC kinetics,
asymptotic fit to a numerical calculation of Eq.~19! gives the
slope of a ln@G(t)/^I&221/̂ I &# versust plot to be approxi-
mately 22@11(j/9z)1/2#/t0e. Neglecting the second term
in the slope would amount to a;50% error in the determi-
nation oft0e if j was as large as 2z. In principle it would be
possible to measurej by repeating measurements ofG(t)
for different values of the beam coherence length,z, at fixed
temperature. This could be done by defocusing the elec
beam in order to degradez.

IV. CONCLUSIONS

We have derived an analytic expression for the inten
correlation function in a TLS experiment from a stepp
surface for both an evaporation/condensation and step-
diffusion model. From these results we can determine
necessary count rates to extract the intensity autocorrela
function from statistical noise. We have also demonstra
that the two models for step equilibrium can be distinguish
from the characteristic decay of the correlation function
long times.

In principle it may be possible to corroborate the mec
nism for step fluctuations by looking for evidence of adato
diffusion on the terraces. In the EC model the step fluct
tions must be correlated with terrace adatom fluctuati
while in the SD model step fluctuations are only due to st
edge atom diffusion. To see fluctuations due to terrace a
tom density changes the TLS measurements would be m
at an in-phase diffraction condition but withqi far from the
peak. The signal would be small since the diffuse intensity
the wings would be lower by two orders of magnitude fro
the peak. Helium atom scattering may be more appropr
for this measurement than electron or x-ray diffraction b
cause of helium’s higher scattering cross section for po
defects~100 times that of electrons!. We are currently devel-
oping the theory of diffraction fluctuations from concentr
tion fluctuations in adsorbed monolayers that would be
rectly applicable to this problem.

In this paper, we have ignored correlations between
motion of adjacent steps. The dynamics of step fluctuati
in the strongly coupled limit has already been investigated
others.31 We can postulate how strong coupling may effe
the above results. For similar rate limiting kinetics we m
assume that there will be substantial modifications to
correlation function. Because of the coupling between ste
correlated step motion will lead to both breathing and opti
type modes for the relative positions of adjacent steps.
pending on the energetics of these two modes there ma
more than one characteristic time scale in the correla
function. The mathematical problem of solving a system
coupled Langevin equations and then calculating the diffr
tion intensity is well beyond the scope of the present wo
We leave the calculation of this more complicated probl
to others.
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APPENDIX

Rather than solving Eqs.~10! or ~14! directly using stan-
dard Fourier techniques, it is more convenient to genera
probability distribution forD(y,t) since we are interested i
calculating averages of cos@qia'D(y,t)#. To do this we place
D(y,t) on a discrete spatial latticey5nai , where n
51,2, . . . ,N (N odd! and writeD andh as a discrete Fou
rier series

Dn~ t !5 (
k50

N21

D̃k~ t !ei ~2pk/N!n, ~A1!

hn~ t !5 (
k51

N21

h̃k~ t !ei ~2pk/N!n. ~A2!

Substituting Eqs.~A1! and~A2! into either Eqs.~10! or ~14!
gives a linear equation

]

]t
D̃k~ t !52gkD̃k~ t !1h̃k~ t !, ~A3!

wheregk andh̃k(t) are appropriate for the EC or SD mode
For the EC modelgk is given by

gk5
2Geb̃

ai
2kT

H 12cosS 2pk

N D J 1
2Gec

kT
, ~A4a!

while for the SC modelgk is given by

gk5
4Gsb̃

ai
4kT

H 12cosS 2pk

N D J 2

1
4Gsc

ai
2kT

H 12cosS 2pk

N D J .

~A4b!

The Fourier components,h̃k(t), are determined from the sta
tistical properties of the noise for each model@Eqs.~13! and
~15!# and have the following properties:

^h̃k~ t !&50, ^h̃k~ t !h̃k* ~ t8!&5
kk

N
dkk8d~ t2t8!, ~A5!

wherekk in the EC model is given by

kk5
2Ge

ai
, ~A6a!

while for the SD model

kk5
4Gs

ai
3 H 12cosS 2pk

N D J . ~A6b!
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Note, that theN real valued quantitiesDn(t) have been
mapped onto an equivalent number of independent Fou
quantities,D̃k , wherek50, . . . ,kmax5(N21)/2 for N odd.
While D̃0 is real, D̃k is in general complex. However, th
number of independentk’s is reduced by half because of th
relationship between the real and complex terms:D̃*
5D̃N2k .

We are after the joint probabilityPJ(DĨ ,t;DĨ 8,t8)dDĨ dDĨ 8

that at a time t the set of displacementsDĨ

5$D̃0 ,D̃1 , . . . ,D̃kmax
% has a value betweenDĨ and DĨ 1dDĨ

and that att8 its value lies betweenDĨ 8 andDĨ 81dDĨ 8. Also
let P(DĨ ,t)dDĨ be the probability that at timet the setDĨ has a
value betweenD̃ and DĨ 1dDĨ . If we then define the condi
tional probabilityPC(DĨ ,tuDĨ 8,t8)dDĨ dDĨ 8 that the value ofDĨ
is betweenDĨ and DĨ 1dDĨ at a timet, given that they were
betweenDĨ 8 andDĨ 81dDĨ 8 at an earlier timet8, then the joint
probability can be written as

PJ~DĨ ,t;DĨ 8,t8!5PC~DĨ ,tuDĨ 8,t8!P~DĨ 8,t8!. ~A7!

Because of the statistical independence of each Fourier
efficient D̃k , P can be written as

P~D̃,t !5)
k50

kmax

Pk~D̃k ,t !. ~A8!

Since the Langevin Eq.~A3! is linear, the probability den-
sity evolves as a Gaussian with its center relaxing accord
to noise free dynamics with a widthsk(t) ~Ref. 21!

Pk5
1

2psk
2~ t !

expH 2
1

2sk
2~ t !

uD̃k2D̃koe
2gktu2J kÞ0,

~A9a!

P05
1

A2ps0
2~ t !

expH 2
1

2s0
2~ t !

uD̃02D̃0oe
2g0tu2J k50,

~A9b!

whereD̃ko is the initial value att50 and the time dependen
width of the distribution is given by

2sk
25

kk /N

2gk
~12exp@22gkt# ! kÞ0, ~A10a!

2s0
25

k0 /N

g0
~12exp@22g0t# ! k50. ~A10b!

The width grows from zero att50 to its steady state value a
t5`. In the long time limit the probabilities given by Eq
~A9! approach their stationary values

Pk
st5

1

2psk
2~`!

expH 2
1

2sk
2~`!

uD̃ku2J kÞ0,

~A11a!
er

o-

g

P0
st5

1

A2ps0
2~`!

expH 2
1

2s0
2~`!

uD̃0u2J k50.

~A11b!

In effect, therefore, the probabilities in Eqs.~A9! are them-
selves conditional probabilities since they incorporate~as a
condition! the initial step distribution. With this in mind we
can identify Eqs.~A9! as

PC,k~D̃k ,tuD̃k8 ,t85ut2tu!

5
1

2psk
2~t!

expH 2
1

2sk
2~t!

uD̃k2D̃koe
2gktu2J kÞ0,

~A12a!

PC,0~D̃0 ,tuD̃08 ,t85ut2tu!

5
1

A2ps0
2~t!

expH 2
1

2s0
2~t!

uD̃02D̃0oe
2g0tu2J k50.

~A12b!

Assuming that the system was set up at some time lon
the past so that it has equilibrated byt850 and assuming
that t.t8, the joint probability can be written as

PJ~DĨ ,t;DĨ 8,0!5)
k50

kmax

PJ,k~D̃k ,t;D̃k8,0!, ~A13!

where

PJ,k~DĨ ,t;DĨ 8,0!5PC,k~D̃k ,tuD̃k8,0!Pk
st~D̃k8!. ~A14!

We are now in a position to calculate the appropriate
erages in Eqs.~8! and ~9!. The average^x̃(t) x̃(0)&
5g2(nn8^cos@qia'Dn(t)#cos@qia'Dn8(0)#& becomes

^x̃~t!x̃~0!&5g2 (
n5 2z/2ai

z/2ai

(
n85 2z/2ai

z/2ai

3E
2`

`

•••E
2`

`

cos@qia'Dn~t!#

3cos@qia'Dn8~0!#PJ~D̃,t;D̃8,0!

3)
k50

kmax

dD̃kdD̃k* d D̃k8dD̃k8* . ~A15!

Equation~A15! can be readily evaluated by writing theDn’s
in terms of their Fourier coefficients,D̃k @defined in Eq.
~A1!# and using Eqs.~A9!, ~A13! and ~A14!, with the
result32
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^ x̃~t!x̃~0!&5g2NyexpH 2 (
2kmax

kmax kk

2Ngk
qi

2J
3 (

l 52 ~Ny21!/2

~Ny21!/2

cosh

H (
2kmax

kmax kk

2Ngk
qi

2e2tgkcosS 2pkl

N D J ,

~A16!

whereNy5z/ai and l 5n2n8. Note that ast→` the step
fluctuations become uncorrelated with those at earlier tim
In this limit ^x̃(`) x̃(0)&5^ x̃(`)&^x̃(0)&. In other words, Eq.
~A16! also represents the average^x̃&2
,

L.

s.

an

ur

s,

.

s.

^x̃&25g2Ny
2 expH 2 (

2kmax

kmax kk

2Ngk
qi

2J . ~A17!

By substituting Eqs.~A16! and ~A17! into Eq. ~8! the
intensity correlation function from a single coherent regi
can be written as

Gp~t!

^I p&
2

5
4

NxNy
F2Ny1 (

l 52~Ny21!/2

~Ny21!/2

cosh

H (
2kmax

kmax kk

2Ngk
qi

2e2tgkcosS 2pkl

N D J G . ~A18!
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